3.803 \(\int \cos ^{\frac{7}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=135 \[ \frac{2 \left (5 a^2+7 b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{21 d}+\frac{2 \left (5 a^2+7 b^2\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d}+\frac{2 a^2 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d}+\frac{12 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a b \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 d} \]

[Out]

(12*a*b*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(5*a^2 + 7*b^2)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*(5*a^2 +
7*b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (4*a*b*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a^2*Cos[c
+ d*x]^(5/2)*Sin[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.172011, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {4264, 3788, 3769, 3771, 2639, 4045, 2641} \[ \frac{2 \left (5 a^2+7 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 \left (5 a^2+7 b^2\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d}+\frac{2 a^2 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d}+\frac{12 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a b \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(12*a*b*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(5*a^2 + 7*b^2)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*(5*a^2 +
7*b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (4*a*b*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a^2*Cos[c
+ d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{7}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+b \sec (c+d x))^2}{\sec ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a^2+b^2 \sec ^2(c+d x)}{\sec ^{\frac{7}{2}}(c+d x)} \, dx+\left (2 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{4 a b \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a^2 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{5} \left (6 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx-\frac{1}{7} \left (\left (-5 a^2-7 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 \left (5 a^2+7 b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{4 a b \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a^2 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{5} (6 a b) \int \sqrt{\cos (c+d x)} \, dx-\frac{1}{21} \left (\left (-5 a^2-7 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{12 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (5 a^2+7 b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{4 a b \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a^2 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}-\frac{1}{21} \left (-5 a^2-7 b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{12 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (5 a^2+7 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 \left (5 a^2+7 b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{4 a b \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2 a^2 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [A]  time = 0.583926, size = 98, normalized size = 0.73 \[ \frac{10 \left (5 a^2+7 b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+\sin (c+d x) \sqrt{\cos (c+d x)} \left (15 a^2 \cos (2 (c+d x))+65 a^2+84 a b \cos (c+d x)+70 b^2\right )+252 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{105 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(252*a*b*EllipticE[(c + d*x)/2, 2] + 10*(5*a^2 + 7*b^2)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(65*a^2
 + 70*b^2 + 84*a*b*Cos[c + d*x] + 15*a^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)

________________________________________________________________________________________

Maple [B]  time = 1.443, size = 362, normalized size = 2.7 \begin{align*} -{\frac{2}{105\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 240\,{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}+ \left ( -360\,{a}^{2}-336\,ab \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( 280\,{a}^{2}+336\,ab+140\,{b}^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -80\,{a}^{2}-84\,ab-70\,{b}^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +25\,{a}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +35\,{b}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -126\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(7/2)*(a+b*sec(d*x+c))^2,x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^
8+(-360*a^2-336*a*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*a^2+336*a*b+140*b^2)*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)+(-80*a^2-84*a*b-70*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*a^2*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+35*b^2*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-126*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} \cos \left (d x + c\right )^{3} \sec \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right )^{3} \sec \left (d x + c\right ) + a^{2} \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^3*sec(d*x + c)^2 + 2*a*b*cos(d*x + c)^3*sec(d*x + c) + a^2*cos(d*x + c)^3)*sqrt(cos
(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(7/2)*(a+b*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2), x)